

Technological Feasibility
October 24, 2016

Kine Jax

Sponsor/Mentor:

Dr. Kyle Winfree, NAU SICCS

Team Members:

Anthony Black
Christopher Whitney

Cherie Parsons
Grant Swenson

Jack Jenkins

Table of Contents

Introduction……………………………………………………………………………………....
3

Technological Challenges………………………………………………...…………………..
.

Data Offload Software 4
Self-Assembling Networks .
Time Synchronization .

Technological Analysis………………………………………………………………………...
Data Offload Software .

Introduction .
Alternative Approaches 5
Chosen Approach .
Proving Feasibility 6

Self-Assembling Networks .
Introduction .
Alternatives .
Chosen Approach 7
Proving Feasibility .

Time synchronization .
Introduction .
Alternatives 8
Proving Feasibility 9

Technology Integration .

Conclusion……………………………………………………………………………………. 11

2

I. Introduction
As time progresses, technology will only become smaller, faster, cheaper, and more
integrated into our everyday lives. We already wear devices that sense us and the world
around us, giving us great insight into how we behave and operate. Using this insight, we
can leverage technology to make better decisions and diagnoses, helping everyone live
more fulfilling lives. Currently there is no wearable device that is adaptable in its data
logging, meaning that there is currently no device that can be expanded to log a wide
array of different extenteral sensors and monitors. The goal of the KineTrax is to create a
mesh of wearable devices that can do just that. The KineJax team will continue the work
of developing this device and the tools needed to configure and analyze the results. In this
document we outline, describe and analyze the key technical challenges we predict for
this project. However, it should be noted that the challenges laid out below are not
mutually exclusive and that others may arise which could have not been predicted.

II. Technological Challenges
In this section we outline key technical challenges that we expect to encounter. However,
the list is not mutually exclusive and we do expect/plan to encounter more challenges as
the project develops.

1. Data Offload Software
a. The software shall be written in a language and scheme that will allow for easy

maintenance and modifications by future researchers.
b. The software shall provide a means to retrieve the data from the devices and

export it into a readable format for data analysis tools.

2. Self-Assembling Networks
a. The software/hardware shall be able to link all seven devices together in one

decentralized meshed network.
b. The software/hardware shall be able to uniquely identify each device, calculate

the distances between any given two devices, and provide a framework for future
development.

3. Time Synchronization
a. The software/hardware should be able to keep all seven devices time

synchronized so that each device can agree on the time down to the millisecond.
b. The hardware's efficiency will also have to considered including latency, drift,

and clock speed.
3

4. Development Environment
a. The software should be developed in an environment which is portable, easy to

set-up, and easily handles dependencies.

III. Technological Analysis
In this section we present our analysis and research on the different technical challenges
identified above. This includes alternative approaches, justification for the chosen
approach, and a way to prove feasibility.

1. Data Offload Software

The challenge with developing the user interface and desktop program lies in the need to
export data in a format usable by data analysis software, such as a CSV file, the ability to
communication with and configure the low-level hardware across platforms (e.g desktop
computers), and to have a code base easily expandable by a wide array of collaborators.
The assumption here is that those collaborators potentially have little coding experience.
For this issue, we considered several options: Python, C, and Processing.

a. Alternative Approaches
The alternatives considered were Python and C. Python offers an easy-to-learn
language that is an interpreted language. C is a language that is a well-founded
compiled language, which would provide a lower overhead, but is not as easy to
learn. Processing language is a compiled language, with an easy-to-learn syntax
like Python, and is the language of choice by the sponsor.

i. Python is a popular and widely-used programming language that is known
for it’s highly abstracted style and easy learning curve. The drawback to
the language is the overhead. An abstracted and interpreted language such
as Python may impact performance with serial communication.

ii. C is another widely used language and has the advantages of lower

overhead when compared to Python and Processing, as well as being the
language used on the KineTrax devices. This reduces the number of
different languages used in the project, but it is more difficult to learn.

4

iii. Processing is the language desired by the sponsor, and is a language that
allows for fast development of GUIs. Since it is not an interpreted
language like Python, it will result in lower overhead in comparison.
Additionally, while the initial Processing syntax is based on Java, it also
includes support for other syntax styles, such as Python, giving the
sponsor choices in how they wish to maintain the code.

b. Chosen Approach
i. Our chosen approach will be Processing. While all options possess the

ability to read and export the data, Processing has the advantages of
having lower overhead and is the language that will already be known by
those tasked with maintaining the codebase after delivery.

c. Proving Feasibility
i. In order to prove feasibility, we shall develop a simple program in

Processing that will display a simple user interface that will model the
final product. The demo shall involve connecting to the KineTrax device
and establishing some simple communications.

2. Self-Assembling Networks

The challenge of this self-assembling network is to have a system that can reliably
establish connections that can leverages hardware constraints and compatible protocol
stacks. We first have to have wireless network protocols that works with the CC2500
transceiver. Since the only compatible network protocol is SimpliciTi, we are forced to
use it. However, this constraint limits our scope of research and analysis; research that
might lead to insight. For this reason the alternatives below assume we do not have this
constraint. We considered three approaches: Bluetooth, Zigbee, and SimpliciTi.

i. Alternative Approaches
The alternatives considered were Bluetooth,ZigBee, and SimpliciTi.
Bluetooth is a widely used wireless standard that is commonly used for
simple connection between two devices. For example, the Pebble Watch

5

uses a Bluetooth connection to an IOS/Android phone. ZigBee is a more
complex wireless solution that offers additional resources such as
synchronization and monitoring, i.e home automation. SimpliciTi is Texas
Instruments’ proprietary radio frequency protocol.

1. Bluetooth is a pure peer-to-peer protocol that use short-wave radio

to communication between devices up to a range of 100m.
Bluetooth is a widely accepted technology. However, the lack of
internet mechanism to connect to multiple devices does not make it
a viable alternative.

2. ZigBee is networking standard that allows for low-cost,

low-power, mesh networks. The standard is targeted at devices
with long battery consumption requirements and widely used in
monitoring applications. It is a perfect solution for achieving
multiple network connections asynchronously across multiple
devices.

3. SimpliciTi is a low power proprietary protocol available for some
of TI’s chipsets including the CC2500. It supports star with
extenders and peer to peer networks. It also supports sleeping
devices which helps cut down on power usage. This is the only
wireless protocol supported by KineTrax.

ii. Chosen Approach
1. Since we are limited by the hardware requirements, the only viable

approach is the SimpliciTi protocol. However, we will be able to
implement Zigbee like behavior using this protocol.

iii. Proving Feasibility
1. To prove feasibility, we shall implement a simple program that

demonstrates mesh network behavior between multiple devices
using the MSP430-EZ430-RF2500 development board and its
internal temperature sensors.

6

3. Time synchronization

The challenge of time synchronization between devices will ultimately depend on the
constraints of the hardware. These constraints are the configuration (i.e clock speed),
transceivers latency, distance between devices, time drift (which is directly related to
clock speed), and the choice of algorithms. These are just a few of the aspects that
contribute to this challenge and the optimal solution will have to be holistic in its
approach. This challenge is made even more complex by the need to maintain reliability,
scalability and adaptability among devices.

a. Alternative Approaches
1. Cristian's algorithm: The server keeps track of the time while other

devices synchronize to it. A node makes a request. The server
preps a response and appends its own time. The node receives the
response from server and sets the time to time from the server (T)
+ Round Trip Time(RTT)/2. The accuracy can be improved with
multiple requests. It does not double check time accuracy because
there is only one server. This algorithm assumes the RTT is short.

2. Berkeley algorithm: The main server fetches times from clients,
average the results, and reports back to the clients with how much
each node should change. Clocks with times outside a certain
threshold are disregarded. Systems however, usually don’t subtract
time because it can break monotonic time (fundamental for certain
algorithms).

3. Network Time Protocol (NTP): The network is split up into layers.
The top layer of devices keeps track of the time. The next layer
references the layer above for time synchronization and can check
other devices in the same layer to verify. The next layer references
the layer above them and so on and so forth.

4. Clock Sampling Mutual Network Synchronization: Nodes in the
network recursively correct time based on the offset. This
algorithm is scalable over mesh networks.

5. Precision Time Protocol: There are one or more master clocks that
communicate their time to boundary clocks that then communicate
their time to their nodes.

7

6. Reference broadcast synchronization: A transmitter sends out time
to multiple nodes. The receiver nodes receive the broadcast and
communicates with other receiver nodes. The difference between
neighbors is calculated with average difference.

7. Reference Broadcast Infrastructure Synchronization: The
clients/nodes receive data packets and look at time of arrival in the
packet by observing the physical layer. The time is exchanged with
its neighbors and compared. The average of the difference of times
between nodes is calculated. This algorithm requires no
modification of the access node.

ii. Chosen Approach
1. Because it matters most that all nodes are synced to a single clock

the best approach to use is Cristian’s algorithm. It is the most
intuitive to implement and logical approach because the devices
will be very close to each other cutting down on the round trip
time. Furthermore, it is easy to increase accuracy by increasing the
number of requests.

iii. Proving Feasibility
1. To prove this is a feasible approach we will use the MSP430 to

send a timestamp between two devices. The node that sent the
initial request will get a response from the other node that includes
the time it was received. The node will use Cristian’s algorithm to
correct the time. To verify this algorithm is working we will use an
oscilloscope to measure the pulse on the two nodes and verify the
two pulses line up.

4. Development Environments
The challenge of choosing a development environment is difficult because there are so
many options and compatibility issues. Since, the only options for programing the MSP is
C and C++ (which is not recommended by most embedded system programmers) we are
forced to use those languages.The key aspects of this challenge are the ability to handle
dependency, load the program to the device, and debug the program once on the device.

a. Alternative Approaches
1.Code Composer Studio: This a development IDE (Interactive Development

Environment) that is recommended by Texas Instruments and is built of Eclipse source code. A key

8

feature of this environment is that it allows one to see the device's registers live and can handle all the
build dependencies. However, on Unix like environments it does not support the development board.

2.Energia: This is an open source IDE that was built to look and feel like the Arduino
IDE and was made specifically for programing MSP devices. This is a great option for people who have
experience programing Arduinos. However, its debug tools are more limited than Code Composer and its
handling of dependencies it not the most intuitive.

3.Makefiles with terminal tools: This approach uses cmake files to handle the project
build and then load the binaries onto the device using the command line tool mspdebug . One advantage of
this approach is that it would allow the project to be platform independent and would require full
understanding of all steps needed to build. However, a major drawback of this approach is that it would
require the explicit declaration of all the dependencies and would not have as intuitive debugging.

b. Chosen Approach
The approach we are choosing is Code Composer using the Windows OS, because it is the fastest
to get programing and allows for the most intuitive debugging. However, in the future it would be
a great idea to develop a process to allow for development using makefile because it would allow
for OS independence and would require researchers to fully understand the build process.

C. Proving Feasibility
If we are able to prove feasibility of the previously stated challenges it only following logically
that we are able to build the system.

c. Technology Integration
i. Problem and solution overview

1. Our software must effectively report data and offload it to some
software accessible to the users. We have decided to do this with
the Processing language, as it is offers the best balance of the
criteria stated in Table 1 (pg. 5).

2. The devices must create a self-assembling network to effectively
record this data. We have chosen to use SimpliciTi (using Zigbee
ideas), as it is supported by our Ti processor already.

3. The devices must also all have their time synchronized down to the
millisecond, which we plan to accomplish using Cristian’s
Algorithm.

4. The devices must not only remain synchronized, but must also
maintain this synchronization over an extended period of time.

9

ii. All of these solutions should work together from the documentation our
team has analyzed. The Processing language is a simple language to learn,
and has straight forward documentation and tutorials on how to represent
data to the end users. The data represented to the end users will be
recorded through a mesh network, created using the SimpliciTi protocol.
There is no question of if this protocol will work with our device since it
was developed by Ti, the same manufacturer that our CPUs were created
by. Finally, the clocks on each individual device will be synchronized over
this mesh network through the implementation of Cristian’s Algorithm.
Since this is an algorithmic solution, it can be implemented using any
programming language and should not conflict with any of our other
technological choices.

iii. The following image shows the system diagram, depicting how every
component works together.

10

.

11

IV. Conclusion

To summarize, the problem we hope to solve with this project is the lack of available
technology to log data across multiple network devices seamlessly and precisely. The
technological problems we predict to encounter with this device are communicating with
the device using a GUI, timing syncing across devices, and creating a self-assembling
network. We will show the feasibility of this project by creating a demo that will show
the development device (e.g msp430 ez430-rf2500) self-assembling, exchanging
information, time syncing and communicating through a terminal program. We are
confident that this everything laid out in this document is feasible, however, there are still
many unanswered questions that need to be addressed. For example, will the software
developed on the development device also work on the actual Kine Trax device without
modifications? Will the software be able to able overcome hardware limitations to
efficiently accomplish the requirements? These are questions that will be answered
once development begins.

12

